

Journal of Photochemistry and Photobiology A: Chemistry 95 (1996) 231-233

Novel photocatalytic asymmetrical synthesis of Δ (or Λ)-[Co(acac)₃] (acac, pentane-2,4-dione) from [Co(acac)₂(H₂O)₂] and Hacac with helical ruthenium(II) complexes

Katsutoshi Ohkubo^{a,*}, Megumi Watanabe^b, Hisashi Ohta^b, Satoshi Usui^b

^a Institute for Fundamental Research of Organic Chemistry, Kyushu University, Fukuoka 812, Japan ^b Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kumamoto 860, Japan

Received 8 August 1995; accepted 20 October 1995

Abstract

The photocatalytic asymmetrical synthesis of Δ (or Λ)-[Co(acac)₃] (acac, pentane-2,4-dione) from [Co(acac)₂(H₂O)₂] and Hacac was successfully performed with novel helical ruthenium(II) complexes of Δ -[Ru(Menbpy)₃]²⁺ (1; Menbpy, 4,4'-bis{(1*R*,2*S*,5*R*)-(-)-menthoxycarbonyl}-2,2'-bipyridine), Δ -[Ru(*R*-PhEtbpy)₃]²⁺ (2a), Λ -[Ru(*S*-PhEtbpy)₃]²⁺ (2b) (*R*- or *S*-PhEtbpy, 4,4'-bis[(*R*)-(+)- or (*S*)-(-)-1-phenylethylaminocarbonyl]-2,2'-bipyridine) and Δ -[Ru(bpy)₃]²⁺ (3; bpy, 2,2'-bipyridine); photocatalyst 1 possesses the most efficient extent of minus (counterclockwise) M(*C*₃) helicity along the *C*₃ symmetry axis, resulting in a maximum enantiomeric excess (37% e.e.) of Λ -[Co(acac)₃] in 50% v/v EtOH-H₂O at 298 K.

Keywords: Photocatalytic asymmetrical synthesis; Δ (or Λ)-[Co(acac)₃]; Helical ruthenium(II) complexes

1. Introduction

Although photocatalytic asymmetrical synthesis with chiral (and/or helical) transition metal complexes is interesting and significant in photochemical reactions, it has hitherto been the subject of only limited investigation. Only one report exists on the asymmetrical synthesis of (R)-(+)-1,1'-bi-2naphthol derivatives from 3-substituted 2-naphthol with Δ - $[Ru(Menbpy)_3]^{2+}$ (Menbpy, 4,4'-bis{(1*R*,2*S*,5*R*)-(-)menthoxycarbonyl}-2,2'-bipyridine) [1]. In this work, we deal with the photocatalytic efficiencies of some helical ruthenium(II) complexes for the asymmetrical synthesis of Δ (or Λ)-[Co(acac)₃] (acac, pentane-2,4-dione) from $[Co(acac)_2(H_2O)_2]$ and Hacac (Scheme 1). The helical ruthenium(II) complexes examined in the present photoinduced asymmetrical synthesis reactions are Δ - $[Ru(Menbpy)_3]^{2+}$ (1), Δ - $[Ru(R-PhEtbpy)_3]^{2+}$ (2a), A- $[Ru(S-PhEtbpy)_3]^{2+}$ (**2b**) (*R*or S-PhEtbpy, 4,4'-bis[(R)-(+)- or (S)-(-)-1-phenylethylaminocarbonyl]-2,2'-bip yridine) and Δ -[Ru(bpy)₃]²⁺ (3; bpy, 2,2'-bipyridine).

2. Preparation of the complexes

Complexes 1, 2a and 2b were obtained by optical resolution of diastereomeric Δ , Λ -[Ru(L)₃]²⁺ 2Cl⁻ (L = Menbpy or *R*- (or *S*)-PhEtbpy complexes) (prepared by the reaction of RuCl₃ and L in EtOH at 363 K for 5–6 days) with silica gel column chromatography (eluent, CHCl₃–MeOH), and Δ -[Ru(bpy)₃]²⁺ was obtained in the usual way [2].

3. Results and discussion

Molecular mechanics (MM2) calculations of these complexes with the energetically minimized conformations of the ligands [3] gave $M(C_3)$ helicity for 1 and 2a and $P(C_3)$ helicity for 2b and 3, where $M(C_3)$ and $P(C_3)$ denote minus (counterclockwise) and plus (clockwise) helical arrangement along the C_3 symmetry axis respectively. (This notation was used for tris-bidentate chelate complexes [4].) When 50% v/v EtOH-H₂O solutions containing [Co(acac)₂-(H₂O)₂] (10 mmol dm⁻³) and Hacac (100 mmol dm⁻³) were irradiated by a 500 W xenon lamp in O₂ with or without photocatalyst (20 μ mol dm⁻³) under conditions of $\lambda > 400$ nm at 298 K, the formation of [Co(acac)₃] (4a for Δ and 4b for Λ enantiomer) was obtained only in the reaction with

^{*} Corresponding author.

^{1010-6030/96/\$15.00 © 1996} Elsevier Science S.A. All rights reserved SSDI 1010-6030(95)04263-6

the photocatalyst. A typical result obtained for complex 1 is shown in Fig. 1. As can be seen in Fig. 1, the asymmetrical photocatalysis of 1 caused the accumulation of 4a and 4b in different concentrations with a constant enantiomeric excess (e.e.) of 37% of 4b during the photoreaction; the product concentrations of [4a+4b] and [4b-4a] were determined by UV and CD spectroscopic measurements respectively with $\epsilon = 133 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1}$ at $\lambda(\text{UV}) = 595 \text{ nm}$ for 4a + 4b, $\Delta \epsilon = -8.11 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1}$ (4a) and $\Delta \epsilon = +8.11 \text{ mol}^{-1}$ dm³ cm⁻¹ (**4b**) at λ (CD) = 574 nm and $\Delta \epsilon$ = +2.88 mol⁻¹ dm³ cm⁻¹ (4a) and $\Delta \epsilon = -2.88 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1}$ (4b) at $\lambda(CD) = 647$ nm; the turnover number was evaluated on the basis of [4a+4b] with respect to [1]. (The extinction coefficients ϵ for UV and $\Delta \epsilon$ for CD were determined using Δ and Λ -[Co(acac)₃] (4a and 4b respectively) which were obtained by the optical resolution of racemic $[Co(acac)_3]$ with (2R,3S)-(-)- dibenzoyl-tartaric acid monohydrate in benzene and cyclohexane. The enantiomeric excess (e.e.) the of **4**b was evaluated from equation e.e. $(\%) = 10^2 [4b - 4a] / [4a + 4b]$.) It is notable from the e.e. values of 4b summarized in Table 1 that the magnitude of the asymmetrical induction of the present photocatalysts follows the order of $1 \gg 2a = 2b > 3$ with the prevailing conformation of $M(C_3)$ -4b in the case of $M(C_3)$ -1(or 2a) and of $P(C_3)$ -4a in the case of $P(C_3)$ -2b(or 3). The different molecular extents of the helical photocatalysts (1-3) probably change the magnitude of asymmetrical induction; the formation of $[Co(acac)_3]$ (4a + 4b)from

Fig. 1. Asymmetrical synthesis of Δ - and Λ -[Co(acac)₃] (4a and 4b respectively) from [Co(acac)₂(H₂O)₂] (10 mmol dm⁻³) and Hacac (1.0 mol dm⁻³) with the photocatalyst 1 (20 μ mol dm⁻³) in 50% v/v EtOH-H₂O in O₂ at 298 K.

 $[Co(acac)_2(H_2O)_2]$ and Hacac, after oxidation of $[Co(acac)_2(H_2O)_2]$ by the helical ruthenium(III) complexes (generated by the reaction of 1-3 with O₂), suffers from the asymmetrical induction of 1-3; the extent of asymmetrical induction by $M(C_3)$ -1 was most remarkable in the present reactions.

Detailed investigation of the photocatalysed asymmetrical synthesis reaction is now in progress.

Table 1
Asymmetrical synthesis of Δ (or Λ)-[Co(acac) ₃] (4a (or 4b)) from [Co(acac) ₂ (H ₂ O) ₂] and Hacac with the helical photocatalysts 1-3 ^a

Photocatalyst	Molecular helicity	$\lambda(\text{MLCT})_{max}(\epsilon)$ (nm)	Yield (%)			E.e. (%)	Prevailing
			4a	4b	Total		comguration
$\Delta - [Ru(Menbpy)_3]^{2+} (1)$	$M(C_3)$	466 (27200)	9.7	21.1	30.8	37	$M(C_3)$
Δ -[Ru(<i>R</i> -PhEtbpy) ₃] ²⁺ (2a)	$M(C_3)$	464 (21200)	21.2	21.4	42.6	0.5	$M(C_3)$
$A-[Ru(S-PhEtbpy)_3]^{2+}$ (2b)	$P(C_3)$	464 (21200)	22.6	22.4	45.0	0.5	$P(C_3)$
$\Delta - [\operatorname{Ru}(\operatorname{bpy})_3]^{2+} (3)$	$P(C_3)$	452 (14600)	1.05	1.0	2.1	< 0.1	$P(C_3)$

^a [Photocatalyst] $\approx 20 \ \mu \text{mol dm}^{-3}$; [Co(acac)₂(H₂O)₂] $\approx 10 \ \text{mmol dm}^{-3}$; [Hacac] = 1.0 mol dm $^{-3}$; in 50% v.v EtOH-H₂O in O₂ at 298 K.

References

- [2] G.B. Porter and R.H. Sparks, J. Photochem., 13 (1980) 123.
- [3] H. Ishida, T. Hamada, Y. Fujishita, Y. Saito and K. Ohkubo, Bull. Chem. Soc. Jpn., 66 (1993) 714.
 - [4] A.G. Lappin and R.A. Marusak, Coord. Chem. Rev., 109 (1991) 125.

[1] T. Hamada, H. Ishida, S. Usui, Y. Watanabe, K. Tsumura and K. Ohkubo, J. Chem. Soc., Chem. Commun., (1993) 909.